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The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout (KO)

mice that display schizophrenia-like behaviors and this study evaluated the role of CB2r in the regulation of such behaviors. Mice lacking

the CB2r (CB2KO) were challenged in open field, light–dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance,

and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the

OF and the PPI test. Gene expression of dopamine D2 (D2r), adrenergic-a2C (a2Cr), serotonergic 5-HT2A and 5-HT2C receptors

(5-HT2Ar and 5-HT2Cr) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB2r decreased motor activity in

the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment.

Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it ‘normalized’ the PPI deficit in CB2KO mice. CB2KO

mice presented increased D2r and a2Cr gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased

5-HT2Cr gene expression in the dorsal raphe (DR), and 5-HT2Ar gene expression in the PFC. Chronic risperidone treatment in WT mice

left a2Cr gene expression unchanged, decreased D2r gene expression (15 mg/kg), and decreased 5-HT2Cr and 5-HT2Ar in PFC and DR. In

CB2KO, the gene expression of D2r in the PFC, of a2Cr in the LC, and of 5-HT2Cr and 5-HT2Ar in PFC was reduced; 5-HT2Cr and

5-HT2Ar gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB2r has a

relation with schizophrenia-like behaviors. Pharmacological manipulation of CB2r may merit further study as a potential therapeutic target

for the treatment of schizophrenia-related disorders.
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INTRODUCTION

In recent years, it has been postulated that the endocanna-
binoid system may be an important element involved in
the development of schizophrenia. This assumption is
supported by several observations: (1) cannabis use was
reported in around 50% of schizophrenic patients (Barnett
et al, 2007; Bersani et al, 2002); (2) cannabis use is
associated with an increased risk of developing schizo-
phrenia (Andreasson et al, 1987; Zammit et al, 2002); (3) a
decrease in the age of onset of schizophrenia has been
reported (Sugranyes et al, 2009); and (4) schizophrenia-like

symptoms may develop in non-schizophrenic cannabis
users (Morgan and Curran, 2008). In addition, schizophre-
nic patients showed a worsening of both positive and
negative symptoms and cognitive deficits after administra-
tion of D9-THC (D’Souza et al, 2005). Indeed, high levels of
anandamide have been found in plasma and cerebrospinal
fluid (CSF) in antipsychotic-naive first-episode paranoid
schizophrenics (Leweke et al, 1999; Yao et al, 2002), and
increased CB1 receptor (CB1r) expression in the dorsolateral
prefrontal cortex (PFC) of schizophrenic patients (Dean
et al, 2001). It is interesting to note that drugs used to treat
schizophrenia modify these abnormal parameters in the
endogenous cannabinoid system. In fact, the increased
levels of anandamide in the CSF (Giuffrida et al, 2004) and
plasma (De Marchi et al, 2003) are normalized by
antipsychotic treatment. On the other hand, antipsychotic
treatment decrease CB1r immunodensity in the PFC of
subjects with schizophrenia as determined in post-mortem
studies (Urigüen et al, 2009).
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As for the anatomic location of cannabinoid receptors,
CB1r is mainly expressed in the CNS, particularly
the basal ganglia, hippocampus, cerebellum, and cerebral
cortex (Abood et al, 2010a; Herkenham et al, 1990, 1991).
In contrast, CB2 receptor (CB2r) has been considered the
‘peripheral’ cannabinoid receptor owing to its presence in
the spleen and lymphocytes (Abood et al, 2010b; Munro
et al, 1993). However, considerable functional and anatomic
evidence suggests that CB2r are expressed in the nervous
system. CB2r were recently found in the brainstem of rat,
mouse, and ferret (Van Sickle et al, 2005). Further studies in
rats have identified CB2r distributed extensively through-
out different brain areas, including the spinal nucleus,
hippocampus, olfactory nucleus, cerebral cortex, amygdala,
striatum, thalamus, and cerebellum (Atwood and Mackie,
2010; Gong et al, 2006; Onaivi et al, 2006). In addition, CB2r
gene expression has been identified in the thalamus,
periaqueductal grey matter, cervical and thoracic spinal
cord, and different brain nuclei, including the caudate–
putamen, nucleus accumbens, cingulate cortex, amygdala,
hippocampus, ventromedial hypothalamic nucleus, arcuate
nucleus, substantia nigra, and dorsal and medial raphe
nuclei (Garcia-Gutierrez et al, 2010; Racz et al, 2008).

In addition, recent studies have sketched out the potential
role of cannabinoid CB2r in the neurobiology of psychiatric
disorders (Ishiguro et al, 2010; Onaivi, 2009). Interestingly,
a close relation between diminished CB2r function (poly-
morphism Q63R) and increased susceptibility to schizo-
phrenia in the presence of other risk factors has been
reported (Ishiguro et al, 2010). This observation supports
the notion of a relationship between the cannabinoid system
and the development of schizophrenia. It is important to
point out the role of the CB2r in the control of fundamental
neural cell processes, such as proliferation and survival
(Fernandez-Ruiz et al, 2007). The proliferation of hippo-
campal neural progenitors may be modulated through CB2r
(Goncalves et al, 2008; Palazuelos et al, 2006) and has
resulted defective in CB2KO (knockout) mice (Buckley et al,
2000). Therefore, it can be hypothesized that deletion of the
CB2r gene could result in the development of neurochemical
abnormalities that may underlie possible behavioral altera-
tions in several experimental paradigms.

On the other hand, several reports have pointed out that the
deletion of CB1r produces a behavioral endophenotype
consisting of a high degree of anxiety and increased vulner-
ability to depression-like behaviors (Martin et al, 2002; Urigüen
et al, 2004) and decreased memory impairment (Bohme et al,
1999; Reibaud et al, 1999). To date, information on the impact
of the elimination of the CB1r on the development of schizo-
phrenia/like behaviors has not been available.

The aim of this study was to determine the response of
CB2KO mice in different behavioral and cognitive experi-
mental paradigms and gene expression alterations in brain
areas related to schizophrenia. This behavioral and
cognitive profile covered motor, anxiety, depression, short-
and long-term memory, and attention deficit. Furthermore,
the effects of treatment with risperidone were evaluated by
using the pre-pulse inhibition test (PPI) in wild-type (WT)
and CB2KO mice. The gene expression studies were
designed to detect changes in dopamine D2 receptor (D2r)
in the PFC, adrenergic-a2C receptor (a2Cr) in the PFC and
locus coeruleus (LC), and serotonergic 5-HT2A and 5-HT2C

receptors (5-HT2Ar and 5-HT2Cr) gene expression in the
PFC and dorsal raphe (DR) by real-time PCR of naive WT
and CB2KO mice treated with risperidone.

MATERIALS AND METHODS

Animals

Male CB2KO mice on a C57BL/6J congenic background
(kindly provided by Nancy E Buckley, Cal State Polytechnic
University, Pomona, CA) were used. CB2KO founders
crossed with outbred CD1 (Charles River, L’Arbresle Cedex,
France) background (Buckley et al, 2000). Homozygotes
from CB2KO (n¼ 119) and age-matched WT mice (n¼ 108)
were used in all experiments. Mice were 2–3 months old and
weighed 25–35 g at the beginning of the experiments. All
animals were kept at controlled temperature (23±21C) and
light conditions (light–dark cycle switching at 0800 hours
and 2000 hours). All studies were conducted in compliance
with Spanish Royal Decree 223/1998 of 14 March (BOE. 8
18), the Ministerial Order of 13 October 1989 (BOE 18), and
European Council Directive of 24 November 1986 (86/609/
EEC) regulating the care of experimental animals. The
evaluation of behaviors in the light–dark box, elevated plus-
maze, tail suspension, and memory tests were made
manually under blind conditions.

Drugs

Cocaine hydrochloride was obtained from the Ministry of
Health and Consumer Affairs (Ministerio de Sanidad y
Consumo, AGEMED, Madrid, Spain) and was dissolved in
sterile 0.9% physiological saline. Mice were administered a
single intraperitoneal 15 mg/kg dose 10 min before motor
activity assessment. The cocaine dose was selected based on
previous experiments from our laboratory not showing
stereotyped behavior (data not shown). The atypical antipsy-
chotic risperidone (STADA, Barcelona, Spain) was dissolved in
sterile 0.9% physiological saline and administered per os in a
volume of 10 ml/kg. Risperidone was administered at doses of
15, 30, and 60mg/kg, twice a day (0830 and 1800 hours). CB2KO
(n¼ 36) and WT (n¼ 36) animals treated with risperidone or
saline were used for PPI and gene expression studies.

Motor Activity

Open field test. The open field consists of a transparent
square cage 25� 25� 25 cm3 with a white Plexiglas floor
(Urigüen et al, 2004). Mice were individually placed in the
center to initiate a 20-min test that was recorded with a
video camera and analyzed with the SMART (Spontaneous
Motor Activity Recording and Tracking) v.2.5.3 software
system (Panlab, Barcelona, Spain). Traveled distance
and mean speed were analyzed. At 10 min after cocaine
administration, motor activity was measured for 20 min.
Results obtained in this test were analyzed in the whole
20-min period and also divided into 5-min periods.

Anxiety-Like Behavior

Light–dark box test. This model (Crawley and Goodwin,
1980) consisted of two methacrylate boxes 20� 20� 15 cm3,
one transparent and one black and opaque, linked by an
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opaque tunnel (4 cm). Light from a 60 W desk lamp located
25 cm above the light box provided room illumination. Mice
were individually placed facing the black box and tested
in 5-min sessions. The time spent in the lighted area and
the number of transitions was recorded. A mouse that
introduced three paws into the opposite side of the box was
counted as a transition.

Elevated plus-maze test. This paradigm consisted of two
open arms and two enclosed horizontal perpendicular arms
50 cm above the floor (Lister, 1987). The junction of four
arms formed a central squared platform (5� 5 cm2). The
test began with the animal being placed in the center of the
apparatus facing one of the enclosed arms and allowed to
explore freely for 5 min. We counted as arm entries the
introduction of four paws into the arm. The time spent in
the open arms and the number of open-arm entries was
recorded.

Depression-Like Behavior

Tail suspension test. Mice were individually suspended by
the tail at the edge of a lever suspended above the table top
(the distance to the table surface was 35 cm), and affixed
with adhesive tape placed approximately 1–2 cm from the
tip of the tail (Vaugeois et al, 1997). The duration of
immobility was measured for 6 min. In this situation, mice
develop escape-oriented behaviors interspersed with in-
creasingly longer bouts of immobility.

Evaluation of Short- and Long-Term Memory

Step down inhibitory avoidance. The apparatus is a
31� 19� 15 cm3 acrylic box with a platform located next
to a grid. Mice were placed on the platform and their latency
to step down on the grid with all four paws was measured;
a modified protocol was followed (Izquierdo et al, 1998).
During the training session, immediately after stepping
down on the grid, the animals received a 2.0-s, 0.4-mA
scrambled foot shock. Retention tests were procedurally
identical, except that no foot shock was given and the
latency to step down in these conditions was taken as a
measure of emotional memory. A ceiling of 180 s was
imposed, that is, animals with a test latency of more than
180 s were counted as 180 s. Each animal was tested at 1
and 3 h after training (short-term memory) and at 24 h
(long-term memory).

Sensorimotor Gating

Acoustic pre-pulse inhibition. Pre-pulse inhibition refers to
the reduction in amplitude of the startle reflex that occurs
when a brief, sub-threshold stimulus immediately precedes
a startle stimulus (Hoffman and Ison, 1980). Startle
responses were measured using the CIBERTEC REST 141
system (Madrid, Spain). The testing chamber consisted of a
plastic adjustable cover mounted on a platform. Movement
of the mice within the cover was detected by a piezoelectric
accelerometer attached below the platform. A loudspeaker
mounted 15 cm above the cover provided background
white noise and both acoustic pulses and pre-pulses. The
entire apparatus was housed in a ventilated enclosure.

Presentation of acoustic pulse and pre-pulse stimuli was
controlled by the MONRS software and interface system,
which also digitized, rectified, and recorded the responses
from the accelerometer. Mean startle amplitude was
determined by averaging ten 100 ms readings taken from
the beginning of the pulse stimulus onset. Test sessions
consisted of no stimulus, pulse-only, and pre-pulse trials.
Each ‘pre-pulse’ trial consisted of a 20-ms 68, 71, or 77 dB
non-startling pre-pulse followed 100 ms later by a 40-ms
startling pulse of 120 dB. In contrast, ‘pulse-only’ trials
consisted of the 120-dB stimulus only, and ‘no-stimulus’
trials contained background noise only. To allow acclima-
tizing, 3 days before the performance of the test sessions,
mice were placed each day in the apparatus for 5 min
without background noise. Test sessions began with a 5-min
acclimatization period using a background noise of 65 dB.
The test sessions consisted of a series of 11 pulse-only trials
for habituation purposes, followed by 10 trials of each pre-
pulse intensity plus pulse, and 10 no-stimulus trials, all
presented in a pseudorandom order with a 7–23 s inter-trial
variable interval. The percentage of pre-pulse inhibition was
defined as ((startle amplitude on pulse alone trials�startle
amplitude on pre-pulse trials)� 100)/startle amplitude on
pulse alone trials.

Experimental design. Pre-pulse inhibition experiments
were carried out in two steps. Firstly, the PPI response
was determined under baseline conditions (n¼ 36). After
confirming a significant difference in the PPI response, the
effect of chronic oral risperidone treatment (twice a day for
12 days) was tested in both CB2KO (n¼ 36) and WT
(n¼ 36) mice. Animals were randomly assigned to each
treatment group (saline, risperidone 15, 30, and 60 mg/kg) in
each genotype. PPI response was evaluated after 4, 8, and
12 days of treatment. Each PPI test session was conducted
between 1200 and 1500 hours. At 1 h after the last test
session, animals were killed and brains were removed for
gene expression studies. The number of animals used for
statistical analyses (n¼ 32 per genotype) was slightly lower
than the initial number of treated animals owing to software
failure (n¼ 4), escape from PPI restraint (n¼ 3), and
accidental death after oral administration (n¼ 1).

Gene Expression Analyses

Gene expression studies focused on the main targets of the
mechanism of action of risperidone, which is characterized
by potent blockade of 5-HT2Ar coupled with the relatively
weaker antagonism of the dopamine D2r. In addition,
this drug displays high affinity for serotonin 5-HT2Cr and
adrenergic a2Cr (Schotte et al, 1995).

Real-time PCR. Mice were killed and brains were removed
from the skull and frozen over dry ice. Coronal brain
sections (500 mm) beginning at plates 19–20 (Paxinos and
Franklin, 2001) were obtained in a cryostat (�101C). The
PFC, LC, and DR were microdissected according to a
modification of the Palkovits method (Palkovits, 1983) as
described previously (Garcia-Gutierrez et al, 2010). Total
RNA was isolated from brain tissue micropunches using
Trizol reagent (Invitrogen, Madrid, Spain) and subse-
quently retrotranscribed to cDNA. Quantitative analysis of
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the relative abundance of 5-HT2Ar, 5-HT2Cr, D2r, and a2Cr
gene expressions was performed on the ABI PRISM 7700
Sequence Detector System (Applied Biosystems, Foster City,
CA). All reagents were obtained from Applied Biosystems
and the manufacturer protocols were followed. The
reference gene used was 18S rRNA, detected using Taqman
ribosomal RNA control reagents. All primer–probe combi-
nations were optimized and validated for relative quantifi-
cation of gene expression. Briefly, data for each target gene
were normalized to the endogenous reference gene, and
the fold change in target gene mRNA abundance was
determined using the 2�DDCt method (Schmittgen et al,
2000). This quantification method involves comparing the
Ct values of the samples of interest with a control or
calibrator, such as a non-treated sample or RNA from
normal tissue. The Ct values of both the calibrator and the
samples of interest are normalized to an appropriate endo-
genous housekeeping gene (18S rRNA). CB2KO (n¼ 10) and
WT (n¼ 8) intact animals were used to study receptor gene
expression under baseline conditions. Not all the samples
analyzed resulted in useful data owing to failed reactions
during RT-PCR processing. From the initial CB2KO (n¼ 36)
and WT (n¼ 36) mice treated with risperidone, eight
samples were used per treatment group.

Statistical Analyses

In the open field, light–dark box, elevated plus-maze and
tail suspension tests, amplitude of acoustic startle response
baseline determination, and gene expression studies under
baseline conditions, statistical analysis was performed using
the Student’s t-test for comparing two groups. One-way

analysis of variance (ANOVA) with repeated measures was
carried out for both 5-min periods in the open field and step
down inhibitory avoidance tests, and pre-pulse inhibition
first determination. When appropriate, post hoc individual
differences between groups were determined using the
Student–Newman–Keuls test. Two-way ANOVA was carried
out to evaluate the dose–response effects of risperidone
treatment on gene expression. When appropriate, post hoc
individual differences between groups were determined
using the Student–Newman–Keuls test. Two-way ANOVA
with repeated measures was used to analyze the temporal
course and dose–response effects of risperidone treatment
on the amplitude of the acoustic startle response. Two-way
ANOVA with two repeated measures was used to analyze
the temporal course and dose–response effects of risper-
idone treatment on %PPI. Differences were considered
significant if the probability of error was less than 5%.
SigmaStat v3.11 and SPSS v17 software was used for all
statistical analyses.

RESULTS

Assessment of Motor Activity: Open Field Test

Analyses of 20-min periods: CB2KO mice (n¼ 14) presented
significantly shorter traveled distances compared with their
respective controls (n¼ 10) (Student’s t-test, t¼ 2.482,
p¼ 0.021, 22 d.f.) (Figure 1a). Interestingly, the administra-
tion of cocaine (15 mg/kg, intraperitoneal) significantly
increased the traveled distance in CB2KO mice (n¼ 14)
compared with WT mice (n¼ 10) (Student’s t-test,
t¼�5.410, po0.001, 22 d.f.) (Figure 1c).
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Figure 1 Evaluation of spontaneous motor activity in wild-type (WT) and CB2KO (knockout) mice. Effect of cocaine on motor activity in both genotypes.
The assessment of motor activity was determined measuring the traveled distance (cm) in the open field test during 20 min. In (a), the columns represent the
means and the vertical lines represent the 1±standard error of mean (SEM) of the traveled distance (cm) by CB2KO compared with WT mice, under
baseline conditions. In (c), WT and CB2KO mice received a single cocaine dose (15 mg/kg) and 10 min after the traveled distance was measured during
20 min. Columns represent the means and the vertical lines represent the 1±SEM of the traveled distance (cm) in mice treated with cocaine (15 mg/kg). In
(b) and (d), the columns represent the means and the vertical lines represent the 1±SEM of the traveled distance (cm) by CB2KO compared with WT mice
analyzed in 5-min periods. *Values from CB2KO mice that differ significantly from values in WT mice (Student’s t-test, po0.05).
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Analyses of 5-min periods: Under baseline conditions,
CB2KO mice (n¼ 14) presented significantly shorter traveled
distances compared with their corresponding control (n¼ 10)
in the open field test. One-way ANOVA with repeated
measures showed the significant main effects of genotype
(F(1,22)¼ 6.150, p¼ 0.021) and time course (F(1,22)¼ 124.922,
po0.001), but not significant effect of the genotype� time-
course interaction (F(1,22)¼ 0.097, p¼ 0.759) (Figure 1b). The
administration of cocaine (15 mg/kg, intraperitoneal) signifi-
cantly increased the traveled distance in CB2KO (n¼ 14)
compared with WT mice (n¼ 10). One-way ANOVA with
repeated measures showed significant main effects of genotype
(F(1,22)¼ 29.271, po0.001) and time course (F(1,22)¼ 36.851,
po0.001), but no significant effect of the genotype� time-
course interaction (F(1,22)¼ 0.773, p¼ 0.389) (Figure 1d).

Assessment of Anxiety-Like Behaviors

CB2KO mice (n¼ 12) spent significantly less time in the
light box compared with WT mice (n¼ 14) (Student’s t-test,

t¼ 4.367, po0.001, 24 d.f.) (Figure 2a). No differences were
observed between the two genotypes in the number of
transitions (Student’s t-test, t¼ 0.341, p¼ 0.736, 24 d.f.)
(Figure 2b).

In the elevated plus-maze test, the percentage of time spent in
the open arms significantly decreased in CB2KO (n¼ 12)
compared with WT mice (n¼ 14) (Student’s t-test, t¼ 5.440,
po0.001, 24 d.f.) (Figure 2c). No differences were observed in
the number of transitions between compartments (Student’s t-
test, t¼�1.024, p¼ 0.316, 24 d.f.) (Figure 2d).

Assessment of Depressive-Like Behaviors: Tail
Suspension Test

Exposure to the tail suspension induced a higher immobility
time in CB2KO mice (n¼ 8) than in WT littermates (n¼ 10)
(Student’s t-test, t¼�10.047, po0.001, 16 d.f.), revealing
increased despair behavior in the mice that lacked CB2r
(Figure 2e).

Assessment of Memory Impairment: Step Down
Inhibitory Avoidance

No difference was observed in the pre-training session between
CB2KO (n¼ 11) and WT (n¼ 8) mice. Interestingly, the
evaluation of representative parameters of short-term memory
revealed that CB2KO presented a shorter latency time at 1 and
3 h after scrambled foot shock. Moreover, CB2KO mice had
a lower latency time at 24 h (long-term memory) (one-way
ANOVA with repeated measures followed by Student–
Newman–Keuls test, genotype F(1,17)¼ 7.446, p¼ 0.014; time
F(1,17)¼ 6.297, p¼ 0.023; genotype� time F(1,17)¼ 8.069,
p¼ 0.011) (Figure 3).

Assessment of Sensorimotor Gating: Pre-pulse
Inhibition

CB2KO mice (n¼ 36) did not show differences in the
acoustic startle response amplitude compared with WT
mice (n¼ 36) (Student’s t-test, t¼ 0.265, p¼ 0.792, 70 d.f.)
(Figure 4a). On the other hand, PPI was significantly
decreased in CB2KO compared with WT mice. One-way
ANOVA with repeated measures revealed the significant
main effects of genotype (F(1,70)¼ 16.762, po0.001) and
pre-pulse intensity (F(1,70)¼ 230.285, po0.001), whereas the
genotype� pre-pulse intensity interaction was not signifi-
cant (F(1,70)¼ 0.155, p¼ 0.695) (Figure 4b). Therefore, the
reduction of PPI observed in CB2KO mice was independent
of the pre-pulse intensity tested.

Time Course and Dose Response of the Effects of
Treatment with Risperidone on Acoustic Startle
Response Amplitude

Risperidone treatment had a statistically significant effect,
whereas genotype factor (n¼ 32) did not alter the acoustic
startle response amplitude (Figure 5, Table 1). The time of
treatment induced significant changes in startle amplitude.

Time Course and Dose Response of the Effects of
Treatment with Risperidone on %PPI

The complexity of this experimental design did not allow
the main factors of variation, genotype, and risperidone
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treatment to reach statistical significance (Figure 6, Table 2).
However, the two factors of repetition, pre-pulse intensity
and time of treatment, have emerged as relevant factors of
variation. In the case of pre-pulse intensity, more intense
pre-pulse induced a higher %PPI value. In addition, the
significant interaction between these two factors and
genotype indicates that the evolution of %PPI differed in
WT and CB2KO mice. Thus, WT mice treated with saline
showed a tendency toward lower %PPI (10–15%) over the
course of treatment. In contrast, CB2KO mice treated with
saline showed a tendency toward higher %PPI (5–15%) in
the same period. Although CB2KO mice had a lower %PPI
in the baseline determination, this slight increase could
indicate that these mice maintain capacity to improve
pre-attention. The differences between genotypes in the
temporal course of %PPI were also observed in risperidone-
treated animals. Thus, risperidone treatment enhanced the
reduction of %PPI observed in saline-treated WT mice.
The lowest and medium doses resulted in a 12–17%,
decrease, and the highest dose in a 16–21% decrease.
Consequently, risperidone treatment tended to reduce pre-
pulse inhibition. On the other hand, risperidone treatment
increased %PPI in CB2KO mice. The percentage PPI
increased by 25–36% (15 mg/kg), 25–30% (30 mg/kg), and
32–34% (60 mg/kg). In CB2KO mice, risperidone treatment
tended to improve PPI response (Figure 6, Table 2).

Evaluation of D2r, a2Cr, 5-HT2Cr, and 5-HT2Ar Gene
Expressions

Dopamine D2r gene expression was studied in the PFC
under baseline conditions and after 12 days of treatment
with risperidone (15, 30, and 60 mg/kg, per os) or saline in
WT and CB2KO mice. D2r gene expression was significantly
increased in the PFC of CB2KO mice compared with WT
mice (Student’s t-test, t¼�2.933, p¼ 0.013, 12 d.f.) (n¼ 6–8)

(Figure 7a). After 12 days, risperidone treatment modified
D2r gene expression in the PFC (two-way ANOVA,
genotype: F(1,63)¼ 5.397, p¼ 0.024; risperidone treatment:
F(3,63)¼ 6.805, po0.001; genotype� treatment interaction:
F(3,63)¼ 6.856, po0.001). In WT mice (n¼ 8 per group),
only the 15 mg/kg risperidone dose significantly reduced D2r
gene expression in the PFC (Student–Newman–Keuls test,
po0.05) (Figure 7b). In CB2KO mice (n¼ 8 per group),
treatment with all risperidone doses (15, 30, and 60 mg/kg,
per os) significantly reduced D2r gene expression in the PFC
(Student–Newman–Keuls test, po0.05) (Figure 7b). Saline
treatment did not modify the observed differences (under
baseline conditions) in D2r gene expression between CB2KO
and WT mice (Student–Newman–Keuls test, po0.05)
(Figure 7b). D2r gene expression at doses of 30 and
60 mg/kg of risperidone was significantly reduced in CB2KO
compared with risperidone-treated WT mice (Student–
Newman–Keuls test, po0.05) (Figure 7b).

Secondly, a2Cr gene expression was analyzed in the PFC
and the LC under baseline conditions and after 12 days of
treatment with risperidone (15, 30, and 60 mg/kg, per os) or
saline in WT and CB2KO mice. The a2Cr gene expression
was significantly increased in the PFC (Student’s t-test,
t¼�4.262, p¼ 0.003, 9 d.f.) (n¼ 5–6) (Figure 8a) and LC
(Student’s t-test, t¼�2.420, p¼ 0.039, 10 d.f.) (n¼ 6)
(Figure 8c) of CB2KO compared with WT mice under
baseline conditions. In the PFC, risperidone or saline
treatment did not modify the a2Cr gene expression found
under baseline conditions (two-way ANOVA, genotype:
F(1,63)¼ 960.581, po0.001; risperidone treatment: F(3,63)¼
0.426, p¼ 0.735; genotype� treatment interaction: F(3,63)¼
1.447, p¼ 0.239) (Figure 8b). In the LC, risperidone
treatment reduced a2Cr gene expression only in CB2KO
mice (n¼ 8 per group), whereas it failed to alter a2Cr gene
expression in WT mice (n¼ 8 per group) (two-way
ANOVA, genotype: F(1,63)¼ 114.593, po0.001; risperidone
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treatment: F(3,63)¼ 5.204, p¼ 0.003; genotype� treatment
interaction: F(3,63)¼ 5.077, p¼ 0.004) (Figure 8d). Treatment
with all the doses studied of risperidone in CB2KO
significantly reduced a2Cr gene expression in the LC
(Student–Newman–Keuls test, po0.05) (Figure 8d).

Although treatment with all the doses of risperidone studied
reduced gene expression level in CB2KO, these levels were
significantly higher than those observed in WT mice
(Student–Newman–Keuls, po0.05) (Figure 8d).

Thirdly, 5-HT2Cr gene expression was examined in the
PFC and DR under baseline conditions and after 12 days of
risperidone treatment (15, 30, and 60 mg/kg, per os) or saline
in WT and CB2KO mice. Under baseline conditions, no
difference was observed between the two genotypes in the
PFC (Student’s t-test, t¼�0.025, p¼ 0.981, 10 d.f.) (n¼ 6)
(Figure 9a). However, risperidone treatment reduced
5-HT2Cr gene expression in the PFC in both genotypes
(two-way ANOVA, genotype: F(1,63)¼ 237.027, po0.001;
risperidone treatment: F(3,63)¼ 36.346, po0.001; genoty-
pe� treatment interaction: F(3,63)¼ 37.532, po0.001). In
WT mice (n¼ 8 per group), oral risperidone treatment (15,
30, and 60 mg/kg, per os) significantly reduced 5-HT2Cr gene
expression in the PFC (Student–Newman–Keuls test,
po0.05) (Figure 9b). In CB2KO mice (n¼ 8 per group),
only risperidone at the dose of 60 mg/kg (per os) signifi-
cantly reduced 5-HT2Cr gene expression in the PFC
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Table 1 Results of Two-way ANOVA with Repeated Measures
Performed on Startle Amplitude Data

Factors d.f. F p-value

Between subject

Genotype 1, 59 1.447 0.234

Treatment 3, 59 3.380 o0.05

Within subject

Time 1, 59 33.348 o0.001

Time� genotype 1, 59 0.319 0.574

Time� treatment 3, 59 1.477 0.230
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compared with the saline group (Student–Newman–Keuls
test, po0.05) (Figure 9b). The reduction observed in the
risperidone-treated WT mice was significant compared with
risperidone-treated CB2KO mice at all doses (Student–
Newman–Keuls test, po0.05) (Figure 9b). On the other
hand, under baseline conditions, CB2KO presented sig-
nificantly reduced 5-HT2Cr gene expression in the DR
compared with WT mice (Student’s t-test, t¼ 2.919,
p¼ 0.011, 14 d.f.) (n¼ 7–9) (Figure 9c). The effect of
risperidone treatment on 5-HT2Cr gene expression in the
DR was different in WT and CB2KO mice (two-way ANOVA,
genotype: F(1,63)¼ 4.901, p¼ 0.031; risperidone treatment:
F(3,63)¼ 4.164, p¼ 0.010; genotype� treatment interaction:
F(3,63)¼ 14.026, po0.001). In WT mice (n¼ 8 per group), 30
and 60mg/kg risperidone doses significantly reduced 5-HT2Cr
gene expression in the DR (Student–Newman–Keuls test,
po0.05) (Figure 9d). In contrast, in CB2KO mice (n¼ 8 per
group) the 60mg/kg risperidone dose significantly increased
5-HT2Cr gene expression in the DR (Student–Newman–Keuls
test, po0.05) (Figure 9d). Significant differences between
CB2KO and WT mice were observed in saline-treated and 30

and 60mg/kg risperidone-treated mice (Student–Newman–
Keuls test, po0.05) (Figure 9d).

Finally, 5-HT2Ar gene expression was examined in the
PFC and DR under baseline conditions and after 12 days of
risperidone (15, 30, and 60 mg/kg, per os) or saline treatment
in WT and CB2KO mice. Under baseline conditions, gene
expression of 5-HT2Ar was significantly reduced in the PFC
of CB2KO compared with WT mice (Student’s t-test,
t¼ 2.502, p¼ 0.024, 15 d.f.) (n¼ 7–10) (Figure 10a). Risper-
idone treatment had not significant effect of on 5-HT2Ar
gene expression in the PFC (two-way ANOVA, genotype:
F(1,63)¼ 13.838, po0.001; risperidone treatment: F(3,63)¼
2.756, p¼ 0.051; genotype� treatment interaction: F(3,63)¼
0.274, p¼ 0.844). The differences observed in CB2KO and
WT mice treated with risperidone (n¼ 8 per group) were
due to the genotype factor (Figure 10b). In the DR under
baseline conditions, no significant difference was observed
in 5-HT2Ar gene expression between CB2KO and WT
mice (Student’s t-test, t¼ 1.533, p¼ 0.164, 8 d.f.) (n¼ 5)
(Figure 10c). However, risperidone treatment induced
different effects on 5-HT2Ar gene expression in the DR of
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WT and CB2KO mice (two-way ANOVA, genotype:
F(1,63)¼ 36.216, po0.001; risperidone treatment: F(3,63)¼
4.012, p¼ 0.012; genotype� treatment interaction: F(3,63)¼
23.454, po0.001). In WT mice (n¼ 8 per group), treatment
with risperidone doses of 30 and 60 mg/kg significantly
reduced 5-HT2Ar gene expression in the DR (Student–
Newman–Keuls test, po0.05) (Figure 10d). In CB2KO mice
(n¼ 8 per group), the 60 mg/kg risperidone dose signifi-
cantly increased 5-HT2Ar gene expression in the DR
(Student–Newman–Keuls test, po0.05) (Figure 10d). Signi-
ficant differences between CB2KO and WT were observed in
mice treated with 30 and 60 mg/kg risperidone (Student–
Newman–Keuls test, po0.05) (Figure 10d).

DISCUSSION

The results of this study provide new information about a
possible role of the CB2r in the regulation of schizophrenia-
like behaviors. This claim is supported by several observa-
tions: (1) CB2KO mice exhibited decreased spontaneous

motor activity and increased sensitivity to the motor
stimulant effects of acute cocaine administration in the
open field test; (2) deletion of CB2r gene produced an
anxiogenic-like response in the light–dark box and elevated
plus-maze tests, and a depressogenic-like response in the
tail suspension test; (3) CB2KO mice showed disrupted
short- and long-term memory consolidation in the step
down inhibitory avoidance paradigm; (4) the PPI of the
acoustic startle response was significantly lower in CB2KO
mice compared with WT mice; (5) PPI was markedly
enhanced after chronic oral treatment with the antipsycho-
tic drug risperidone in CB2KO mice, but was not affected in
WT mice; (6) deletion of CB2r’s increased D2r and a2Cr gene
expression in the PFC and LC and decreased 5-HT2Cr gene
expression in the DR and 5-HT2Ar gene expression in
the PFC of CB2KO compared with WT mice; (7) oral
risperidone treatment of WT mice did not affect a2Cr gene
expression, decreased D2r (15 mg/kg) in the PFC, and
decreased 5-HT2Cr and 5-HT2Ar in the PFC and DR; and
(8) treatment with risperidone in CB2KO mice reduced gene
expressions of D2r in the PFC, a2Cr in the LC, and 5-HT2Cr
and 5-HT2Ar in the PFC; risperidone treatment increased
5-HT2Cr and 5-HT2Ar gene expression in the DR.

It is known that schizophrenia is associated with brain
abnormalities induced during CNS development (Rapoport
et al, 2005; Ross et al, 2006). A number of findings suggest a
pro-neurogenic role of CB2r in the control of fundamental
neural cell processes (Galve-Roperh et al, 2008; Harkany
et al, 2007; Katona and Freund, 2008). Therefore, it can be
hypothesized that the lack of CB2r might impair neural
development, thus inducing relevant alterations in several
brain areas. In this context, it can be postulated that these
alterations could be the substrate underlying the behavioral
modifications observed in CB2KO mice. However, the exis-
tence of developmental compensatory mechanisms related
to the lack of this receptor cannot be excluded. In addition,
it is well known that the systemic administration of receptor
antagonists does not mimic the situation of a KO mouse for
the same receptor. The blockade of the CB2r has been
involved in the prevention of alcohol preference develop-
ment (Ishiguro et al, 2006), the inhibition of food
consumption, and the enhancement of spontaneous activity
and stereotyped behavior in C57BL/6 and DBA/2 mice
(Onaivi et al, 2008). In contrast, pre-pulse inhibition or

Table 2 Results of Two-way ANOVA with Two Repeated
Measures Performed on PPI Data

Factors d.f. F p-value

Between subject

Genotype 1, 59 0.160 0.690

Treatment 3, 59 0.417 0.741

Within subject

Pre-pulse intensity 1, 59 925.419 o0.001

Pre-pulse intensity� genotype 1, 59 16.421 o0.001

Pre-pulse intensity� treatment 3, 59 2.163 0.102

Time 1, 59 5.264 o0.05

Time� genotype 1, 59 55.211 o0.001

Time� treatment 3, 59 0.986 0.406

Pre-pulse intensity� time 1, 59 0.022 0.884

Pre-pulse intensity� time� genotype 1, 59 0.041 0.840

Pre-pulse intensity� time� treatment 3, 59 1.113 0.351
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locomotor activity was not affected in mice (Ishiguro et al,
2010). Indeed, transient inactivation of the receptor by CB2r
antagonist use in WT mice does not induce the behavioral
abnormalities observed in CB2KO mice.

In recent years, a considerable number of susceptibility
genes for schizophrenia have been described (Desbonnet
et al, 2009). The generation of mice with targeted mutation
of these genes was focused on the development of genetic
models of the putative regulation of the pathophysiological
mechanisms (Gray et al, 2009; Halene et al, 2009; Han
et al, 2009; Perry et al, 2009; Powell et al, 2008; Rojas et al,
2007; Sakae et al, 2008; Tanda et al, 2009; Wiedholz et al,
2008) and genetic models of risk for schizophrenia (Bégou
et al, 2008; Dyck et al, 2009; Karl et al, 2007; Kvajo et al,
2008; Willi et al, 2010). Schizophrenia includes abnormal-
ities in coordination and movement including extrapyr-
amidal paradigms (tending toward higher motor activity)
and catatonia (usually lower motor activity) (Peralta et al,
2010). Schizophrenia manifests a spectrum of different
levels of motor activity observable as endophenotypes of
this disease. Mice with mutations in the genes of suscept-
ibility to schizophrenia exhibited increased (Gray et al,
2009; Powell et al, 2008; Sakae et al, 2008; Wiedholz et al,
2008), decreased (Hattori et al, 2008), or failure to alter
(Wolinsky et al, 2007) motor activity. The results found in
this study revealed that deletion of the CB2r gene
significantly reduced spontaneous motor activity in the
open field and increased sensitivity to the motor stimulant
effects of acute cocaine administration. Similarly, PKCI/
HINT1 KO mice presented diminished spontaneous motor
activity with increased sensitivity to the motor action of
amphetamine (Barbier et al, 2007). In contrast, mice that
were genetically modified at the NMDA or dopamine
receptors presented increased spontaneous motor activity

and reduced reactivity to dizocilpine, phencyclidine,
amphetamine, or cocaine (Gainetdinov et al, 1999; Mohn
et al, 1999). The limitations of this paradigm seem to be
related to the lack of specificity and predictive value of the
effects on negative or cognitive symptoms. In addition, it
has been reported that individuals with bipolar disorder
and schizophrenia have distinctive profiles of exploratory
behavior (Perry et al, 2009). Patients with bipolar mania
present high motor activity and increased object inter-
action, whereas patients with schizophrenia exhibit normal
object interaction (Perry et al, 2009). As patients with
bipolar disorder present reduced PPI (Giakoumaki et al,
2007) and increased motor activity (Perry et al, 2009), it is
possible that mutant mice with motor hyperactivity and
reduced PPI are more closely related to animal models of
bipolar disorder than to schizophrenia.

The response of CB2KO mice has been studied in animal
models of anxiety and depression. It is important to note
that schizophrenic patients report depression and anxiety as
the most frequent early signs and symptoms occurring
before the first psychotic episode (Iyer et al, 2008). Thus,
the characterization of clinically important phenomena
observed before the onset of psychosis could be important
in the diagnostic process. CB2KO mice display increased
anxiogenic-like response in the light–dark box and elevated
plus-maze tests. Similarly, mutant mice like the hetero-
zygous YWHAE and homozygous sandy show moderately
enhanced anxiety-like behavior in the elevated plus-maze
test (Hattori et al, 2008; Ikeda et al, 2008), whereas
other mice with deletion of schizophrenia-related genes
did not show any variation in anxiety-like behaviors in the
light–dark box and elevated plus-maze tests compared
with WT mice (Barbier and Wang, 2009; Hsu et al, 2007;
Wolinsky et al, 2007). On the other hand, mice with
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overexpression of CB2r presented reduced anxiety-
like behaviors using the same experimental paradigm
(Garcı́a-Gutiérrez and Manzanares, 2011). Deletion of the
CB2r gene induced depressive-like responses in the tail

suspension test. Similarly, Homer1-KO mice and STOP-null
mice show increased depressive-like behavior in the Porsolt
test (Delotterie et al, 2010; Szumlinski et al, 2005). However,
other animal models based on schizophrenia susceptibility
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treated with risperidone that differ significantly from the values in the saline-treated mice (Student–Newman–Keuls, po0.05).
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gene mutations showed an antidepressant-like response
(Barbier and Wang, 2009; Perona et al, 2008; Sakae et al,
2008; Tanda et al, 2009; Yamasaki et al, 2008). In contrast,
overexpression of CB2r resulted in decreased depressive-like
behaviors in acute models (tail suspension and novelty-
suppressed feeding test) and in exposure to chronic
mild stress, suggesting that pharmacological manipulation
of this receptor may be an interesting therapeutic target
in depression-related behaviors (Garcia-Gutierrez et al,
2010).

Cognitive dysfunction is one of the three main clusters of
symptoms in schizophrenia and rodent models involving
susceptibility genes related to schizophrenia manifesting as
significant deficits in working memory and spatial learning
(Gainetdinov et al, 1999; Ikeda et al, 2008; Yamasaki et al,
2008). Using the step down inhibitory avoidance task,
CB2KO mice showed disrupted short- and long-term
memory consolidation of the task. Other genetically modi-
fied mice, proposed as animal models of behavioral and
biochemical alterations implicated in schizophrenia, show
deficits in short-term working and spatial memory (Bégou
et al, 2008; Gray et al, 2009) and deficits in retention of
emotional or spatial memory (Rojas et al, 2007; Tanda et al,
2009). However, not all these mutant mice present memory
impairment; for instance, trace amine 1 receptor KO mice
show no difference on a working memory task compared
with WT mice (Wolinsky et al, 2007).

Impaired sensorimotor gating has been proposed as a
common feature of the cognitive dysfunction observed in
schizophrenia (Braff et al, 2001). The presence of PPI deficit
has thus been considered an important behavioral trait in
rodent models of schizophrenia. For instance, a clear
attention deficit has been observed in mice with mutations
in dopamine or glutamate receptors (Ralph et al, 2001;
Wiedholz et al, 2008; Yamashita et al, 2006). In this study,
baseline PPI was significantly lower in CB2KO mice than
WT mice; however, there is little information about the role
of CB2r in the regulation of PPI in mice. Previous studies
have reported that blockade of the CB2r fails to alter the
response to PPI, but increases the attention deficit induced
by MK-801 (Ishiguro et al, 2010). Disruption of PPI in rats
is at least partly due to activation of D2r (Swerdlow et al,
1991), suggesting that increased activity at these receptors
might also be a substrate for PPI deficits in schizophrenia.
In this sense, patients with schizophrenia present signifi-
cant differences in the acoustic startle reflex, habituation
to startle stimuli, and several PPI levels compared with
healthy controls (Moriwaki et al, 2009), and antipsychotic
treatment with olanzapine, aripiprazole, and risperidone
improve PPI, but do not modify the acoustic startle
reflex or habituation (Kishi et al, 2010; Wynn et al, 2007).
Another study using a longitudinal within-subjects design
reported improved results after switching from the conven-
tional antipsychotic zuclopenthixol to long-acting inject-
able risperidone (Martinez-Gras et al, 2009). On the other
hand, the administration of antipsychotics increases PPI or
reverses the PPI disruptions induced by psychostimulants
in animal studies (Egashira et al, 2005; Gray et al, 2009;
Nagai et al, 2006; Powell et al, 2008; Swerdlow et al, 1991;
Thomsen et al, 2010). Acute administration of clozapine,
risperidone, quetiapine, and haloperidol (Egashira et al,
2005; Powell et al, 2008; Thomsen et al, 2010), and chronic

administration of clozapine (Gray et al, 2009) reverse the
PPI deficit observed in different genetically manipulated
mice. In addition, the administration of haloperidol, clozapine,
and risperidone reverses drug-induced PPI deficits (Nagai
et al, 2006; Swerdlow et al, 1991). The results of this study are
consistent with these reports as chronic oral treatment with
the atypical antipsychotic risperidone (at doses commonly
used in the treatment of schizophrenia in patients) markedly
attenuated the PPI deficits observed in CB2KO mice. In
contrast, risperidone tended to disrupt PPI progressively over
the course of treatment in WT mice. In particular, the dose of
60mg/kg markedly decreased PPI after 12 days of treatment
(21% at 71 dB). On the other hand, risperidone reduced startle
amplitude in both genotypes, being more evident in the
CB2KO mice.

The exploration of neurochemical changes in CB2KO
mice potentially related with the schizophrenia-like beha-
viors observed revealed alterations in the expression of
dopaminergic, adrenergic, and serotonergic receptor genes.
It is important to note that variations in the amount of gene
transcript do not necessarily mean that concomitant
changes in protein occur. These functional modifications
could underlie the attention deficit, at least in part, as
treatment with risperidone improved the PPI response and
tended to ‘normalize’ some of the genes that are altered in
CB2KO mice. In contrast, treatment with risperidone failed
to improve the PPI response in WT mice, but slightly
impaired PPI response at the highest dose and longest
duration of treatment. In addition, the effects of risperidone
induced different alterations in receptor gene expression
compared with CB2KO mice.

The genes and the brain regions studied were selected
based on two criteria: (1) previously reported alterations in
gene expression associated with schizophrenia-like beha-
viors in genetically modified mice (Willi et al, 2010) and (2)
a relation between the main receptor targets and the
mechanism of action of risperidone. D2r, 5-HT2Ar, 5-HT2Cr,
and a2Cr satisfied these criteria (Abi-Dargham and Laruelle,
2005; McCormick et al, 2010; Meltzer and Huang, 2008).

Deletion of the CB2r increased D2r gene expression in the
PFC. This situation could be related with increased
dopaminergic tone, thus favoring deficient sensorimotor
gating as occurs in DAT KO mice that present a chronic
hyperdopaminergic state and deficient sensorimotor
gating in the PPI (Ralph et al, 2001). The increased gene
expression of this dopamine receptor was significantly
reduced after treatment with risperidone, suggesting that
the effectiveness of this drug on the PPI deficit could be at
least partly related to this reduction in gene expression and
its ability to block the receptor. The reduced effect of
risperidone treatment on D2r gene expression in the PFC of
WT mice could be related with the lack of improvement in
%PPI observed in these mice.

CB2KO mice presented significantly reduced 5-HT2Cr
gene expression in the DR nucleus. This reduction could be
related with a decrease in the inhibitory control of DR
serotonergic neurons played by 5-HT2Cr (Quérée et al,
2009), which may result in increased serotonin release in the
PFC. Furthermore, deletion of the CB2r significantly
reduced 5-HT2Ar gene expression in PFC. Taking into
account that PFC activity is modulated by serotonin
through 5-HT2Ar (Puig et al, 2010), it can be hypothesized
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that decreased gene expression of 5-HT2Ar could be a
compensatory mechanism induced by persistently increased
serotonin release by the DR terminals in the PFC. In CB2KO
mice, the effects of risperidone tend to restore 5-HT2Cr gene
expression in the DR to the levels observed in WT mice,
whereas risperidone treatment tends to reduce gene
expression of this serotonergic receptor in the PFC. Typical
and atypical antipsychotics show a similar effect of reducing
5-HT2Cr gene expression in the cortex (Buckland et al, 1997;
Huang et al, 2006). Therefore, if decreased gene expression
of 5-HT2Ar in the PFC reflects a possible compensatory
mechanism in response to increased serotonin release from
DR terminals, it can be hypothesized that risperidone
treatment contributes to this mechanism by reducing
5-HT2Ar gene expression in the PFC even more at the same
time that it increases 5-HT2Ar gene expression in the DR.
Similarly, clozapine reduces 5-HT2Ar gene expression in the
frontal cortex (Burnet et al, 1996). In WT mice risperidone
treatment reduces 5-HT2Ar and 5-HT2Cr gene expression in
the PFC and DR. In the PFC, CB2KO 5-HT2Ar and 5-HT2Cr
were reduced, whereas they were increased in the DR. In
addition, risperidone treatment in these CB2KO mice
markedly improves the PPI deficit. In summary, CB2KO
mice present alterations in the serotonergic pathway from
the DR to the PFC that could be responsible, at least in part,
for the observed PPI deficit. It seems that the effect of
risperidone treatment on this serotonergic pathway could
be related to its beneficial effect on PPI.

The a2Cr plays an important role in cognitive processing
in the PFC. The activation of the a2Cr by an a2 agonist
impairs performance of a spatial delayed alternation task, as
seen in a2A KO mice (Franowicz et al, 2002). In this sense,
we found increased a2Cr gene expression in both the PFC
and LC of CB2KO mice. This alteration could thus be related
with the observed PPI deficit. However, results obtained in
studies made in two types of a2C mutant mice do not
support this explanation. Overexpression of a2Cr results in
enhanced PPI response (Sallinen et al, 1998). On the other
hand, a2C KO mice show reduced PPI response (Sallinen
et al, 1998). Despite this discrepancy, it may be speculated
that increased expression of the a2C receptor contributes
somewhat to the PPI deficit in CB2KO mice. This
contribution could be related to the effects of increased
a2Cr expression in the LC. Noradrenaline release in the PFC
by LC terminals could be reduced. As risperidone treatment
in CB2KO mice reduced a2Cr expression in the LC, this effect
could restore noradrenaline release in the PFC, thus
contributing to PPI improvement. In WT mice, risperidone
did not significantly modify a2Cr gene expression.

In summary, deletion of the cannabinoid CB2r gene
produced behavioral alterations that are commonly
expressed in preclinical animal models of schizophrenia,
namely altered locomotor activity, anxiety-like and depres-
sive-like behaviors, and cognitive deficits including
impaired sensorimotor gating. Gene expression studies in
the PFC, DR, and LC revealed alterations in different
dopaminergic, serotonergic, and noradrenergic receptors.
Chronic treatment with the atypical antipsychotic risper-
idone reduced the PPI deficit, an effect that could be
associated with modifications in the biochemical alterations
observed in CB2KO mice. These results suggest that CB2r
deletion was related to the observed schizophrenia-like

behaviors. Pharmacological manipulation of CB2r may be
further explored as a potential therapeutic target for the
treatment of schizophrenia-related disorders.
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